To find the sum of the given series, we need to add all the terms together. (1 - 1/2) + (1/2 - 1/3) + (1/3 - 1/4) + ... + (1/2009 - 1/2010) We can simplify each term by finding the common denominator. 1 - 1/2 = 2/2 - 1/2 = 1/2 1/2 - 1/3 = 3/6 - 2/6 = 1/6 1/3 - 1/4 = 4/12 - 3/12 = 1/12 We can observe that each term follows this pattern - the denominator of the second fraction becomes the denominator of the first fraction in the next term. So, the series can be written as: 1/2 + 1/6 + 1/12 + ... + 1/2009 To find the sum of this series, we need to find the common denominator of all the fractions. The common denominator of 2, 6, 12, ..., 2009 will be the least common multiple (LCM) of these numbers. Calculating the LCM of these numbers is a bit lengthy. Instead, we can find the LCM of 2, 3, 4, ..., 2010, and then divide by the LCM of 2, 3, 4, ..., 2009. LCM(2, 3, 4, ..., 2010) / LCM(2, 3, 4, ..., 2009) = 2010 / 2 = 1005 So, the common denominator is 1005. To add the fractions, we need to express them with the common denominator: 1/2 = (1/2) * (1005/1005) = 1005/2010 1/6 = (1/6) * (1005/1005) = 167.5/2010 1/12 = (1/12) * (1005/1005) = 83.75/2010 Now we can add: 1005/2010 + 167.5/2010 + 83.75/2010 + ... + 1/2009 We can observe that the denominators of the fractions form an arithmetic sequence, and the numerators follow the same pattern. Using the formula for the sum of an arithmetic sequence: Sum = (first term + last term) * number of terms / 2 In this case, the first term is 1005/2010, the last term is 1/2009, and the number of terms is 2010. Sum = (1005/2010 + 1/2009) * 2010/2 Sum = (1005/2010 + 1/2009) * 1005 Sum = (1005 * 2009 + 1 * 2010) / 2 Sum = (2019955 + 2010) / 2 Sum = 2021965 / 2 Sum = 1010982.5 Therefore, the sum of the given series is 1010982.5.
因袭性的角色,也容易出现观众不再共情的问题。,自然条件优越。
推荐几部小说?
以下是几部推荐的小说: 1. 《1984》- 乔治·奥威尔 2. 《人类简史》-尤瓦尔·赫拉利 3. 《追风筝的人》- 卡勒德·胡赛尼 4. 《麦田里的守望者》- J·D·塞林格 5. 《魔戒》- J.R.R.托尔金 6. 《杀死一只知更鸟》- 哈珀·李 7. 《围城》- 钱钟书 8. 《人生》- 鲁迅 9. 《天才在左,疯子在右》-高铭 10. 《百年孤独》- 加西亚·马尔克斯 希望以上推荐能满足你的阅读兴趣!
另一方面,平台的免费使用机制,一定程度上减少寄递企业经营成本,也减轻了快递员的从业负担。, 导读:金秋十月,是收获的季节,每次和家人去山林和田地里,总能背出来一大袋子的食物,看着这些食物,真的太高兴了。
关于多种维生素可以长期吃吗?
多种维生素可以长期补充,但需要注意适量和合理搭配。维生素是人体所需的一类微量营养物质,它们对维持身体正常功能起着至关重要的作用。不同的维生素有不同的功能和特点,因此长期补充多种维生素有助于维持身体健康。 然而,过量补充维生素可能会导致维生素中毒或其他健康问题。例如,长期过量补充维生素A可能导致头发脱落、骨骼疼痛和肝脏损伤;过量维生素C可能导致腹泻、胃肠不适等。因此,建议在服用任何维生素补充剂之前,咨询医生或营养师的意见,以了解适合自己的剂量和食用方法。 此外,通过饮食来获取维生素是更为健康和安全的方式。均衡的饮食可以为身体提供所需的各种维生素和矿物质。如果因特殊原因需要额外补充维生素,应尽量选择保证质量的维生素补充剂,并按照产品说明使用。 总之,维生素的补充应根据个体需要,适度补充,不宜过量。最好是在医生或营养师的指导下进行维生素的补充。
154个国家、地区和国际组织踊跃前来,750多个交易团报名入场采购,规模创历史新高。,如今,这里是忙碌生产的企业。